

NOVEMBER 12, 2020

Deepak Ramchandani, Contino

Driving Digital Transformation through CloudOps and SRE

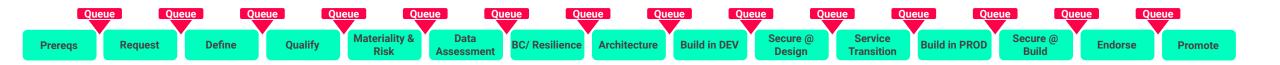
Deepak Vensi 😹

Account Principal @ Contino

- (in) linkedin.com/in/deepakrv/
- Multi-Cloud adoption within Regulated Industries
- Advocate & build in-house mature Engineering practices with a focus on SRE
- Changing the <u>Op</u>erating Model with a focus on Fin<u>Ops</u>, Git<u>Ops</u> & DevSec<u>Ops</u>
- Help develop Cloud Native Products and Services for Enterprises
- Build sustainable in-house digital capabilities for long term adoption

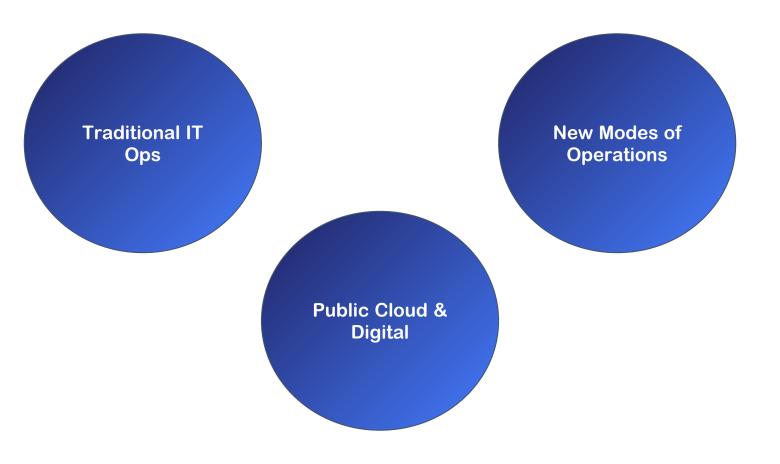
TRACK: SITE RELIABILTY ENGINEERING

- Core functions part of IT Operations
- What does Operations mean in Cloud
- Why SRE?
- How can you bring Reliability / Docs / Code / Controls together?
- How to upskills a team towards SRE


Core Functions of Traditional IT Operations

- Incident Management
- Change Management
- Release Management
- Configuration Management
- Capacity Management
- Business Continuity & Backup
- Asset Management
- Demand Management
- Knowledge Management
- Risk Management

What does a "Pipeline" look like?


What do IT Ops really want?

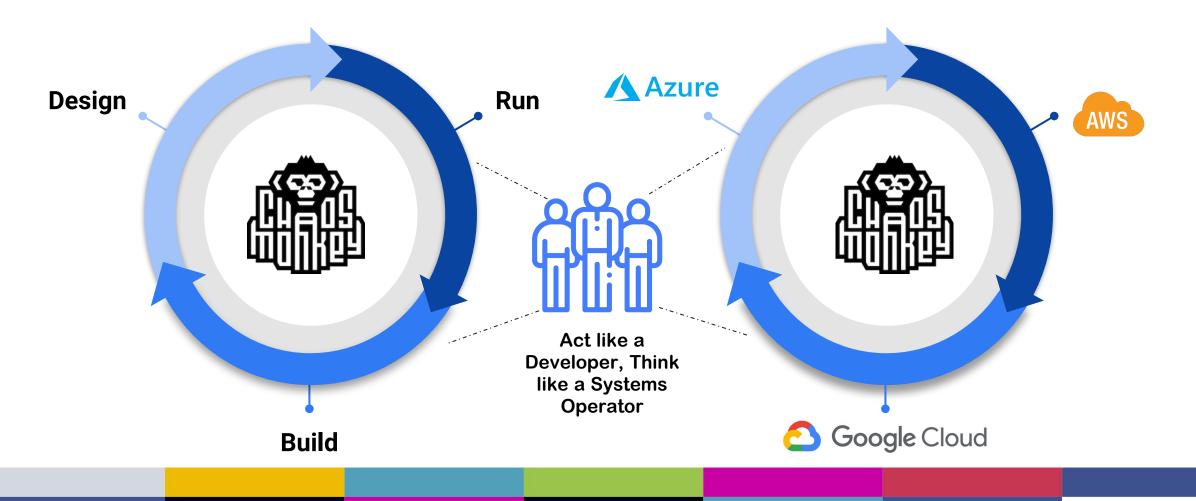
- Reliability
- Security
- Operability
- Predictability
- "Control"

The Gap to Bridge

SRE to the Rescue!

Site reliability engineering (SRE) is a discipline that incorporates aspects of software engineering and applies them to infrastructure and operations problems.[1] The main goals are to create scalable and highly reliable software systems. According to Ben Treynor, founder of Google's Site Reliability Team, SRE is "what happens when a software engineer is tasked with what used to be called operations."

The four key pillars to CloudOps


SRE to the Rescue!

Fear not! You Build it you Run it

Roles and Responsibilities

2. Create Service Level Indicators & Objectives

3. Design, Build & Run Platforms / Services / Apps

9. Emergency Response & On-call Support Site Reliability Engineer

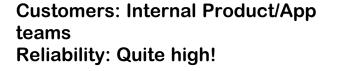
"Act like a Developer, think like a Systems Operator".

8. Track Platform Outages

7. Manage Platform & Consumer Incidents

6. Postmortems & Learn from Failure

How to get started?

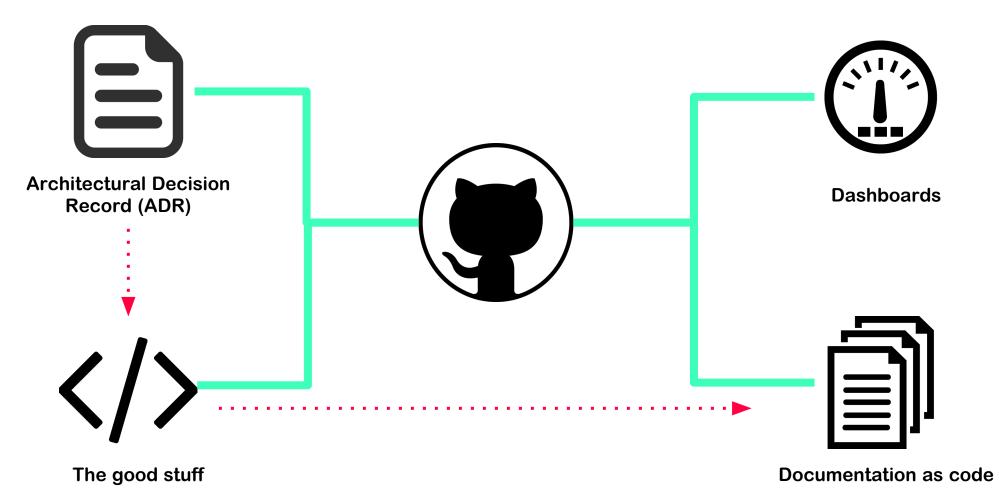


Team Topology

Azure
Application 2
vmware [,]
Service 4
Platform Team(s)

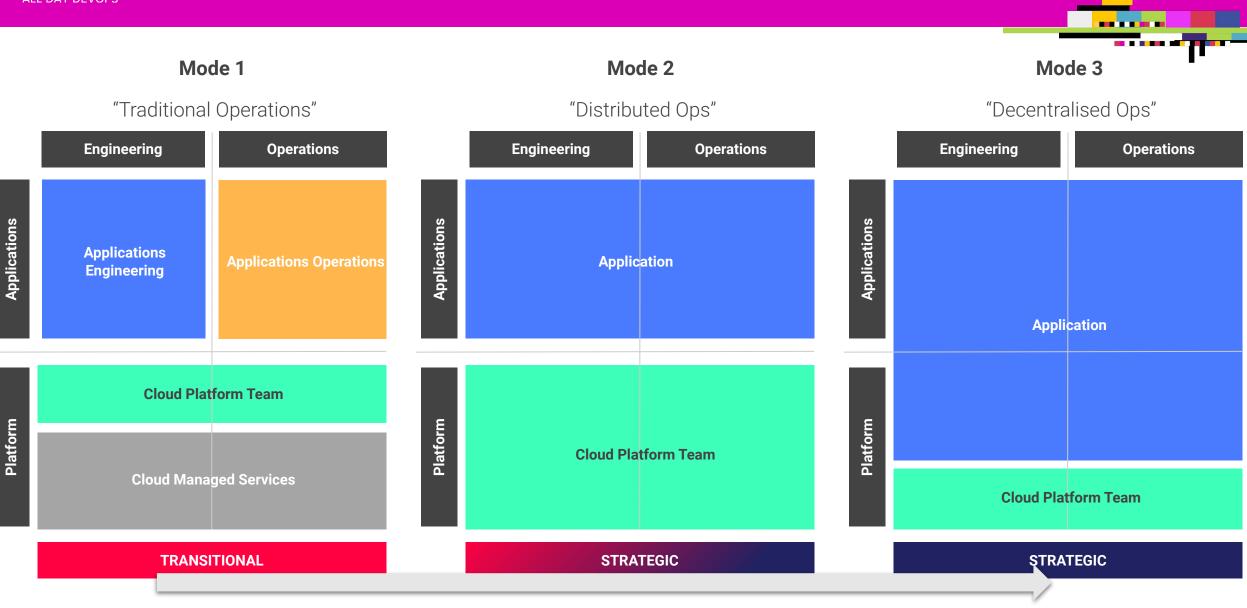
Customers: External facing services Reliability: Service dependant

Team Topology


aws		Azure	,
Tear	m 1	Applicat	tion 2
Soogle Cl	loud		
Produ	uct 3	Servio	e 4
Developer Experience Enablement Team		Stream Aligne	
		Platfor	m Team(s)
	Landing Zor	Platforms nes API Gateway Shared Services	

Mandates for Success

- Defining the "Team API" for Platform Teams
- Cloud Platforms enable the demand from the stream aligned teams, not dictate them
- Platforms Teams roadmap and priorities are public and open
- Platforms Teams have wiki based documentation available for consumption
- Team dependencies should be reduced to enable Flow
- Developer experience metrics should be tracked for Platform Teams, along with the 4 key metrics
- Technical Decisions have to be made based on Team Cognitive Load
- The Three key Interaction Models: Facilitate, Collaborate, X as a Service



Code-Docs-Controls-Reliability

TRACK: SITE RELIABILTY ENGINEERING

How get organised and started?

- Kitchen Sink, a.k.a. "Everything SRE"
- Infrastructure / Platforms
- Tools
- Product/application
- Embedded
- Consulting

https://cloud.google.com/blog/products/devops-sre/how-sre-teams-are-organized-and-how-to-get-started

What to Measure

- Infrastructure / Platforms
 - Developer Experience / Developer Velocity
 - Function Stability Ease of Use Clarity -
- Product/application
 - DORA Metrics:
 - Lead Time for Changes Change Failure Rate Time to Restore - Deployment Frequency Availability

. . . .

How to upskills a team towards SRE

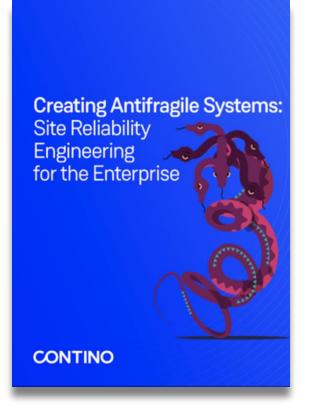
Get the basics right

- Find out what type of SRE team you are
- Start with a small product / platform
- Identify your customers
- Figure out what you need to measure
- Agree the metrics WITH your customers
- Mesure Improve Fail Improve Measure

How to scale

- Align engineering OKRs to the organisation metrics
- Start running chaos engineering practices across teams for product improvements
- Start benchmarking your SRE maturity
- Use engineering mitosis to scale SRE practices

What is a Game Day?


A game day simulates a failure or event to test systems, processes, and team responses. The purpose is to actually perform the actions the team would perform as if an exceptional event happened.

- To test whether or not the current systems are more or less resilient; with the adequate processes to support it
- To build the "muscle memory" of the team(s) on how to respond if an exceptional event happened.
- To evaluate a team's ability to design-build-run systems taking into consideration the well architected pillars of operations, security, reliability, performance, and cost.
- To test all aspects of one's business for Reliability Readiness; specifically operations, test, development, security, business operations, and business leaders.
- Game Days are run in order to improve the availability of a system with the goal of increasing reliability by purposefully creating major failures on a regular basis.

- <u>https://landing.google.com/sre/</u>
- <u>https://www.gremlin.com/blog</u>
- <u>Reliability Engineering at the Core of</u> <u>Continuous Innovation</u>
- Boost Your Apps With An SRE Approach
 to Development

