
TRACK: CI/CD CONTINUOUS EVERYTHING

NOVEMBER 12, 2020

German Rodriguez @ H-E-B

The One (Pipeline)

1



TRACK: CI/CD CONTINUOUS EVERYTHING

● Platform Engineering Manager @ H-E-B

● 20+ years of experience in Software 
Engineering, Infrastructure and Architecture

● Pin collector, football fan, other eclectic 
hobbies.

Tell me about yourself

2



TRACK: CI/CD CONTINUOUS EVERYTHING

● H-E-B – Supermarket Chain 

● San Antonio, TX

● 350+ stores, South Texas & Mexico
● 1000+ Engineers

● 200+ apps/services

Intro

3



TRACK: CI/CD CONTINUOUS EVERYTHING

• UI-based jobs
• Plugin sprawl
• Jenkins sprawl
• Difficult to support
• Global SSH target configuration required

• Incipient Groovy pipelines
• Solving the same problems over and over
• Lots of support issues

• Pipeline reconditioning was a primary 
service

Initial State – 5 years ago

4

Let’s find 
that token



TRACK: CI/CD CONTINUOUS EVERYTHING

• Compile & Build (Gradle, npm)

• Package (RPM)

• Publish (Nexus)

• Deploy (SSH)

Common Job Steps

5



TRACK: CI/CD CONTINUOUS EVERYTHING

• Groovy pipeline template

• Complementary to existing build jobs

• A set of files to copy in your project

• Instructions to create a pipeline job

• Java and npm only

The One Pipeline – Iteration 1

6



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 1 – Code Samples

7



TRACK: CI/CD CONTINUOUS EVERYTHING

• Popular, widespread use
• Jenkins consolidation
• Faster onboarding, time to initial deployment 

from 1-2 days to <30 min
• Could not distribute updates or best practices, 

teams added small changes, drift over time
• Support issues (less) reconditioning abandoned 

pipelines
• Complex initial setup for the associated services 

(git deploy keys, Nexus credentials, SSH keys)

Iteration 1- Learnings

8



TRACK: CI/CD CONTINUOUS EVERYTHING

• Opinionated (very) central pipeline generator
• Run a (meta) pipeline to create your project 

pipeline
• One way to run, all access tokens pre-

configured
• K8s targets only
• Very strict, no room for deviation

The One Pipeline – Iteration 2

9



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 2 – Code Samples

10



TRACK: CI/CD CONTINUOUS EVERYTHING

• Low acceptance (more like zero acceptance)

• Abandoned

• Some good learnings on container image 

lifecycle, K8’s deployments, templates

Iteration 2 - Learnings

11



TRACK: CI/CD CONTINUOUS EVERYTHING

• Shared Jenkins pipeline script, inner sourced
• Controlled by parameters and a YAML file in the 

repository
• Multiple languages, packaging and deployment 

options supported
• Java, Go, Angular, Node, Scala
• Gradle, Maven, npm
• RPM, Docker
• Lighthouse, other testing suites
• Github, Gitlab
• VM, Docker, K8’s
• Nexus, Harbor, Artifactory

The One Pipeline – Iteration 3 (Current)

12



TRACK: CI/CD CONTINUOUS EVERYTHING

• Support for deployments on multiple platforms and 

environments

• Ability to optionally tag git repos back

• Versioned, stable & beta tags

• All associated tools already integrated using per-

tool service accounts (not good)

The One Pipeline – Iteration 3 (Current)

13



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 – Job Setup

14



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 – Job Parameters

15



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 – Code Organization

16



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 – Code Sample

17



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 – Repo Configuration Options

18



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 – Typical Configuration

19



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 – Stage Run

20



TRACK: CI/CD CONTINUOUS EVERYTHING

• Security Scans
• Slack Integration
• Multi-step builds
• Integration with our PaaS offer

• Self-service pipeline setup, including creation of accounts 
and tokens on associated tools

• Different deployment models (concurrency options)
• Rollbacks
• Secret injection
• Instrumentation (Audit logs, metrics)

Iteration 3 – Expansion

21



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 – Pipeline Generation

22



TRACK: CI/CD CONTINUOUS EVERYTHING

Iteration 3 -
Instrumentation

23



TRACK: CI/CD CONTINUOUS EVERYTHING

• High acceptance, low drift
• With self-service new pipelines are ready in <5 min
• Updates are much easier to integrate
• Great collaboration, contributions by multiple teams

• IOS, Python, R
• Flexible, still embeds our best practices
• We hit the “Method too large error” 

https://support.cloudbees.com/hc/en-us/articles/360039361371-
Method-Code-Too-Large-Error

• Jenkins node and memory management is challenging
• Pipeline starts to look like Gitlab CI or Circle CI declarative 

models, still allows for a quick setup, consistent best 
practices, updates, specific checks, support

Iteration 3 - Learnings

24

https://support.cloudbees.com/hc/en-us/articles/360039361371-Method-Code-Too-Large-Error


TRACK: CI/CD CONTINUOUS EVERYTHING

• Refactor, simplify our code base

• Port engine to other CI tools (Gitlab CI?, GitHub 
Actions?), take advantage of native features

• Looking into the Waypoint model as a potential 
common platform

Iteration 4?

25



TRACK: CI/CD CONTINUOUS EVERYTHING

● Shared pipelines accelerate time to deployment, reduce 

technical debt, provide valuable insight into the engineering 

process

● Flexibility and transparency increases the chances of success

● Repeated best practices and innovation can be accomplished 

while abstracting common concerns

● Unknown unknowns decrease when the places where change 

needs to be effected and the cognitive load on teams is 

reduced

Key takeaways

26



TRACK: CI/CD CONTINUOUS EVERYTHING

Reach me:

https://twitter.com/callmegar

https://www.linkedin.com/in/callmegar/

Q&A

27

https://twitter.com/callmegar
https://www.linkedin.com/in/callmegar/


TRACK: CI/CD CONTINUOUS EVERYTHING

THANK YOU TO OUR SPONSORS

28


