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● Platform Engineering Manager @ H-E-B

● 20+ years of experience in Software 
Engineering, Infrastructure and Architecture

● Pin collector, football fan, other eclectic 
hobbies.

Tell me about yourself
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● H-E-B – Supermarket Chain 

● San Antonio, TX

● 350+ stores, South Texas & Mexico
● 1000+ Engineers

● 200+ apps/services

Intro
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• UI-based jobs
• Plugin sprawl
• Jenkins sprawl
• Difficult to support
• Global SSH target configuration required

• Incipient Groovy pipelines
• Solving the same problems over and over
• Lots of support issues

• Pipeline reconditioning was a primary 
service

Initial State – 5 years ago
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• Compile & Build (Gradle, npm)

• Package (RPM)

• Publish (Nexus)

• Deploy (SSH)

Common Job Steps
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• Groovy pipeline template

• Complementary to existing build jobs

• A set of files to copy in your project

• Instructions to create a pipeline job

• Java and npm only

The One Pipeline – Iteration 1
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Iteration 1 – Code Samples
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• Popular, widespread use
• Jenkins consolidation
• Faster onboarding, time to initial deployment 

from 1-2 days to <30 min
• Could not distribute updates or best practices, 

teams added small changes, drift over time
• Support issues (less) reconditioning abandoned 

pipelines
• Complex initial setup for the associated services 

(git deploy keys, Nexus credentials, SSH keys)

Iteration 1- Learnings
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• Opinionated (very) central pipeline generator
• Run a (meta) pipeline to create your project 

pipeline
• One way to run, all access tokens pre-

configured
• K8s targets only
• Very strict, no room for deviation

The One Pipeline – Iteration 2
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Iteration 2 – Code Samples
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• Low acceptance (more like zero acceptance)

• Abandoned

• Some good learnings on container image 

lifecycle, K8’s deployments, templates

Iteration 2 - Learnings

11



TRACK: CI/CD CONTINUOUS EVERYTHING

• Shared Jenkins pipeline script, inner sourced
• Controlled by parameters and a YAML file in the 

repository
• Multiple languages, packaging and deployment 

options supported
• Java, Go, Angular, Node, Scala
• Gradle, Maven, npm
• RPM, Docker
• Lighthouse, other testing suites
• Github, Gitlab
• VM, Docker, K8’s
• Nexus, Harbor, Artifactory

The One Pipeline – Iteration 3 (Current)
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• Support for deployments on multiple platforms and 

environments

• Ability to optionally tag git repos back

• Versioned, stable & beta tags

• All associated tools already integrated using per-

tool service accounts (not good)

The One Pipeline – Iteration 3 (Current)
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Iteration 3 – Job Setup
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Iteration 3 – Job Parameters
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Iteration 3 – Code Organization
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Iteration 3 – Code Sample
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Iteration 3 – Repo Configuration Options
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Iteration 3 – Typical Configuration
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Iteration 3 – Stage Run
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• Security Scans
• Slack Integration
• Multi-step builds
• Integration with our PaaS offer

• Self-service pipeline setup, including creation of accounts 
and tokens on associated tools

• Different deployment models (concurrency options)
• Rollbacks
• Secret injection
• Instrumentation (Audit logs, metrics)

Iteration 3 – Expansion
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Iteration 3 – Pipeline Generation
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Iteration 3 -
Instrumentation
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• High acceptance, low drift
• With self-service new pipelines are ready in <5 min
• Updates are much easier to integrate
• Great collaboration, contributions by multiple teams

• IOS, Python, R
• Flexible, still embeds our best practices
• We hit the “Method too large error” 

https://support.cloudbees.com/hc/en-us/articles/360039361371-
Method-Code-Too-Large-Error

• Jenkins node and memory management is challenging
• Pipeline starts to look like Gitlab CI or Circle CI declarative 

models, still allows for a quick setup, consistent best 
practices, updates, specific checks, support

Iteration 3 - Learnings
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• Refactor, simplify our code base

• Port engine to other CI tools (Gitlab CI?, GitHub 
Actions?), take advantage of native features

• Looking into the Waypoint model as a potential 
common platform

Iteration 4?
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● Shared pipelines accelerate time to deployment, reduce 

technical debt, provide valuable insight into the engineering 

process

● Flexibility and transparency increases the chances of success

● Repeated best practices and innovation can be accomplished 

while abstracting common concerns

● Unknown unknowns decrease when the places where change 

needs to be effected and the cognitive load on teams is 

reduced

Key takeaways
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Reach me:

https://twitter.com/callmegar

https://www.linkedin.com/in/callmegar/

Q&A

27

https://twitter.com/callmegar
https://www.linkedin.com/in/callmegar/


TRACK: CI/CD CONTINUOUS EVERYTHING

THANK YOU TO OUR SPONSORS
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